DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4014B
 MSI

8-bit static shift register
Product specification
File under Integrated Circuits, IC04

8-bit static shift register

DESCRIPTION

The HEF4014B is a fully synchronous edge-triggered 8-bit static shift register with eight synchronous parallel inputs (P_{0} to P_{7}), a synchronous serial data input (D_{S}), a synchronous parallel enable input (PE), a LOW to HIGH edge-triggered clock input (CP) and buffered parallel outputs from the last three stages $\left(\mathrm{O}_{5}\right.$ to $\left.\mathrm{O}_{7}\right)$.

Operation is synchronous and the device is edge-triggered on the LOW to HIGH transition of CP. Each register stage is of a D-type master-slave flip-flop. When PE is HIGH, data is loaded into the register from P_{0} to P_{7} on the LOW to HIGH transition of CP. When PE is LOW, data is shifted to the first position from D_{S}, and all the data in the register is shifted one position to the right on the LOW to HIGH transition of CP. Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times

Fig. 1 Functional diagram.

Fig. 2 Pinning diagram.

HEF4014BP(N): 16-lead DIL; plastic (SOT38-1)
HEF4014BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF4014BT(D): 16-lead SO; plastic (SOT109-1)
(): Package Designator North America

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications

PINNING

PE parallel enable input
P_{0} to P_{7} parallel data inputs
$\mathrm{D}_{\mathrm{S}} \quad$ serial data input
CP clock input (LOW to HIGH edge-triggered)
O_{5} to O_{7} buffered parallel outputs from the last three
stages

FUNCTION TABLES

Serial operation

n	INPUTS			OUTPUTS		
	CP	D_{S}	PE	O_{5}	O_{6}	O_{7}
1	Γ	D_{1}	L	X	X	X
2	Γ	D_{2}	L	X	X	X
3	1	D_{3}	L	X	X	X
6	Γ	X	L	D_{1}	X	X
7	5	X	L	D_{2}	D_{1}	X
8	Γ	X	L	D_{3}	D_{2}	D_{1}
		X	X		chan	

Parallel operation

\mathbf{n}	INPUTS			OUTPUTS		
	$\mathbf{C P}$	$\mathrm{D}_{\mathbf{S}}$	$\mathbf{P E}$	\mathbf{O}_{5}	\mathbf{O}_{6}	$\mathbf{O}_{\mathbf{7}}$
	Γ	X	H	P_{5}	P_{6}	P_{7}
	-	X	X	no change		

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)

L = LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial

- = positive-going transition
= negative-going transition
$\mathrm{D}_{\mathrm{n}}=$ either HIGH or LOW
$\mathrm{n}=$ number of clock pulse transitions

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	\mathbf{V}_{DD}		TYPICAL FORMULA FOR P $(\mu \mathrm{W})$

\qquad

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{C}_{\mathrm{P}} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\mathrm{t}_{\text {PHL }}$		$\begin{array}{r} 130 \\ 55 \\ 40 \end{array}$	$\begin{array}{r} 260 \\ 110 \\ 80 \end{array}$	ns ns ns	$\begin{array}{r} 103 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 44 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
LOW to HIGH	$\begin{gathered} \hline 5 \\ 10 \\ 15 \\ \hline \end{gathered}$	$t_{\text {PLH }}$		$\begin{array}{r} \hline 115 \\ 50 \\ 40 \\ \hline \end{array}$	$\begin{array}{r} \hline 230 \\ 100 \\ 80 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} & 88 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	$\mathrm{t}_{\text {THL }}$		$\begin{aligned} & \hline 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} \hline 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	${ }_{\text {t }}^{\text {th }}$ H		$\begin{aligned} & \hline 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} & \hline 10 \mathrm{~ns}+(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 9 \mathrm{~ns}+(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 6 \mathrm{~ns}+(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
Set-up times $\mathrm{PE} \rightarrow \mathrm{CP}$	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 40 \\ & 25 \\ & 15 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 0 \end{array}$		ns ns ns	
$\mathrm{D}_{\mathrm{S}} \rightarrow \mathrm{CP}$	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 35 \\ & 25 \\ & 25 \end{aligned}$	$\begin{array}{r} \hline-5 \\ -5 \\ 0 \end{array}$		ns ns ns	
$\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{CP}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 35 \\ & 25 \\ & 25 \end{aligned}$	$\begin{array}{r} -5 \\ -5 \\ 0 \end{array}$		ns ns ns	
Hold times $\mathrm{PE} \rightarrow \mathrm{CP}$	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	$t_{\text {hold }}$	$\begin{aligned} & \hline 25 \\ & 20 \\ & 15 \end{aligned}$	$\begin{array}{r} -5 \\ 0 \\ 0 \end{array}$		ns ns ns	see also waveforms Fig. 4
$\mathrm{D}_{\mathrm{s}} \rightarrow \mathrm{CP}$	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	$t_{\text {hold }}$	$\begin{aligned} & \hline 30 \\ & 20 \\ & 15 \end{aligned}$	$\begin{array}{r} 15 \\ 10 \\ 7 \end{array}$		ns ns ns	
$\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{CP}$	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	thold	$\begin{aligned} & 30 \\ & 20 \\ & 15 \end{aligned}$	$\begin{array}{r} 15 \\ 10 \\ 7 \end{array}$		ns ns ns	
Minimum clock pulse width; LOW	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	${ }^{\text {twCPL }}$	$\begin{aligned} & 70 \\ & 30 \\ & 24 \end{aligned}$	$\begin{aligned} & 35 \\ & 15 \\ & 12 \end{aligned}$		ns ns ns	
Maximum clock pulse frequency	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	$\mathrm{f}_{\text {max }}$	$\begin{array}{r} 6 \\ 15 \\ 20 \end{array}$	$\begin{aligned} & 13 \\ & 30 \\ & 40 \\ & \hline \end{aligned}$		MHz MHz MHz	

の

APPLICATION INFORMATION

Some examples of applications for the HEF4014B are：
－Parallel－to－serial converter
－Serial data queueing
－General purpose register
Fig． 4 Waveforms showing minimum clock pulse width，and set－up and hold times for $P E$ to $C P, D_{s}$ to $C P$ ，and P to $C P$ ．Set－up and hold times are shown as positive values but may be specified as negative values．

